Data Reprocessing on Worldwide Distributed Systems

Mike Diesburg and Daniel Wicke (Fermilab) for the DØ Collaboration

CHEP 04 Interlaken Switzerland

Revision: 1.6.2.4

Introduction

Improved understanding of the DØ-Detector

- DØ tracking improved significantly during 2003
- Basis
 - improved understanding of the DØ-Detector
 - based on reality rather than design/plans
- 100 pb⁻¹ (60%) of the data were reconstructed with older software versions

⇒ Redo reconstruction of data

Rereconstruction

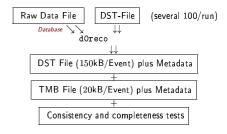
The tasks from the computing perspective

- $100 \,\mathrm{pb}^{-1}$ correspond to ca. 300M events.
- RAW data $250 \text{kB/Event} \implies 75 \text{TB}$.
- DST output $150 \mathrm{kB/Event} \Longrightarrow 45 \mathrm{TB}$.
- \bullet 50s/Event on 1GHz PIII CPUs

 \implies 2000CPUs for completion within 3 Months.

- Central Farm (1000CPUs) used to capacity with data taking.
- Shutdown of 8 weeks sufficient to do 30%.

Available Resources


FNAL Farm,	1000CPUs	DØ installed
GridKa,	300CPUs	DØ installed
Lyon	220CPUs	DØ installed
Nikhef	80CPUs	in EDG
	320CPUs	in EDG
SAR,	130CPUs	DØ installed
UK,	340CPUs	DØ installed
Westgrid,	300CPUs	DØ installed, from Oct.
External	1690CPUs	(1GHz PIII equiv.)

⇒ capacity more than doubled.

But: Each cluster is different; even "DØ installed" can be very different

Application flow of a rereconstruction job

- Several TMB files shall be merged before storing.
 ⇒ Creates more complicated workflow
- Database access from Europe much to slow
 ⇒ old DSTs as input.

Management of Large Batches of Jobs

Problem

Initialisation, local paths for intermediate and final results, copy mechanisms are different on different clusters: person power intensive.

Workflow management: Runjob

- handles chains of executables
- passes output of one program as input to a following
- track metadata
- separates calling details from organisation
- allows for automatic parallelisation of jobs

Base of improvements

Automate linking for several programs into a single job based on a job description and local configurations.

Distribution of Input Data

Sequential Access through Metadata: SAM

The order of events in a dataset has no meaning

Optimisation

- Don't loop through file lists.
- Request datasets.
- Order in which files corresponding to a dataset are processed may change.
- System optimises the order to minimise tape access and tape mounts or WAN transport.

WAN Transport

sam_cp as generic interface to GridFTP, bbftp, tape access . . .

7

References

- [1] M. Diesburg and D. Wicke, DØ Reprocessing (Project Web Page) http://www-d0.fnal.gov/computing/reprocessing/
- [2] K. Riesselmann, Ferminews 27, 2 (Feb. 2004) 2. http://www.fnal.gov/pub/ferminews/ferminews04-02-01/p1.html
- [3] D. Wicke, IJMPA, Proceedings to DPF 2004, Riverside, CA (in preparation).
- [4] K. Riesselmann, Cern Courier 44, 7 (Sep. 2004) 16. http://www.cerncourier.com/main/article/44/7/15

Backflow of Results

TMRs

- Merging of TMBs only possible at FNAL
- Individual TMBs shouldn't be stored in SAM
- Backflow "manually" using sam_cp.
 - . TMBs and Metadata
 - · Logfiles and results of crosschecks.

DST

- · Storage initially not foreseen
- Later: Remote storing into SAM onto decentral locations.
- Transport to user on first access.

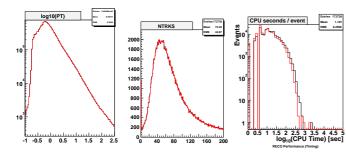
Distribution of Jobs

Manually

- Problematic datasets were reconstructed from RAW at FNAL
- Datasets provided in sizes requested by each site.
- Reconstruction of these datasets started remotely
- ⇒ Individual solutions for administrating jobs.
- ⇒ Individual solutions for error recovery.

Per GRID

- Within the 3 British sites distribution of jobs done via SAMGrid/JIM.
- Nikhef tried to use EDG (basis of LCG) to distribute jobs to further sites.


JIM

Certification of Sites

- Each centre was required to certify, i.e. process a defined dataset of 66 files.
- Results were compared to a reference (which itself was certified by comparing to processing from RAW)

Rereconstruction, Problems

Organisation

- Late release of dOreco
- \Rightarrow Implicit dependencies on the (FNAL) environment noticed late.
- ⇒ Incorrect planning, wrong priorities, unnecessary developments.
- ⇒ Significant additional delay.
- The flexibility makes planning very difficult.

Data distribution

- Delays occured due to other applications with high number of tape access
- \bullet Bottelneck in central file router of SAM
- Network bottlenecks on the way to some centres.

Job Running

- A large number of jobs crashed (up to 20%)
- Lots of manual intervention.
- Bookkeeping is important.

Data backflow

- ullet Significant number $\mathcal{O}(1/1000)$ of corrupted TMBs after copying back
- GridFTP doesn't check this sufficiently well.

Summary and Outlook

- First data rereconstruction on globally distributed clusters
 - 300M Events or 45TB of data were processed at 7 centres.
- $-\,$ 30% or 15TB of these at systems remote of Fermilab.
- Grid-concepts for data and job distribution were used.
- The concepts foreseen for LHC proven in general.
- \bullet Next distributed Data rereconstruction at DØ planned for this year
- including external merging, i.e. complete external production.
- from raw data, i.e. with database access.
- using SamGrid/JIM and LCG

12